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ABSTRACT 

The terminal ballistic dispersion of a non-rotational, small-caliber 

weapon system is obtained on a priori knowledge of the Initial dispersion 

Induced by the weapon system proper. 

The study considers a dynamic system whose behavior is governed by 

a system of differential equations having probabilistic initial conditions. 

The behavior of the system, in terms of the kinematic probability, is then 

determined as a function of time and spatial variables. 

Subsequently, in contrast to the customary method in the evaluation of 

weapon systen. effectiveness, a measure of effectiveness - probability of 

hit - is obtained as a function of initial dispersion. Also, numerical 

examples as well as discussion of the results are given. 
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I.  INTRODUCTION 

Conventionally, the terminal effect of projectiles, related to a 

weapon system, is analyzed based on a priori knowledge of the dispersion 

at a target. The probability density function of the dispersion is 

specified and its parameters are given. The probability of hit and other 

effectiveness measures are then sought [1,2]. 

Such an approach is pertinent if we address ourselves strictly to the 

problem of effectiveness at the target only, and the terminal dispersion 

taken is well substantiated experimentally. When the projectiles are 

related to a new conceptual weapon system for which no physical experiments 

have yet been performed, a question naturally arises about the soundness 

of th« above approach. 

To a larger extent than this consideration on the target alone, if 

we are more concerned with the effectiveness of a conceptual weapon system 

which incurs certain terminal effects on a given target, hoping eventually 

to bolster the rationale for preliminary engineering design of the system, 

it is hardly plausible that we could merely consider the terminal dispersion 

as a priori knowledge. What appears to be needed in the treatment of such 

a problem is a terminal dispersion obtained on the base of some criteria 

pertaining to the weapon system proper. 

We can schematically envieion three regions of concern: conceptual 

weapon system, exterior ballistics and terminal effects, as shown in Fig. 1. 

The region D which is the intersection of the regions A and B contains 



intüimation lelacmg co ehe weapon system, whereas ehe legion E which is 

ehe incersection ot the regions B and C has intormacion pertaining to the 

terminal, dispersion.  It is clear chat mtormation arises rrom D, coupled 

with B, woaid direct mtormation about E and subsequently about C.  The 

specific point at concern now is what particular mtormation trom D must 

we generate and how should it arrive at Ec 

Since a measurable mtormation at E is the terminal dispersion, it 

is reasonable to consider its counterpart at D - the initial dispersion 

For this reason, the a priori Knowledge on the initial dispersion ot a 

conceptual weapon system is necessary, tor it is tormulated on the base ;■ 

our understanding ot the intrinsic properties such as weapon dynamic 

parameters [3] 01 the system under consideration  The terminal dispersion 

is then rigorously sought analytically 

In this report the probability distribution ot terminal dispersion 

and subsequently some teimmai etiects are obtained to: a given target aad 

a given prubdbiiity ot initial dispersion  The pioblem is considereo as a 

stochastic dynamic process tor a time duration ranging rrom t , t^ t 
c- 

The initial probabilities ot the kinematic, or state, variables - dispia.e- 

ment and velocity - are given a priori 

As ut special interest, an exterior ballistic model tor small maps is 

considered.  It is shown that a linearization ot the system dynamic equatiori 

can be realized  A method ot attack rendering the transtormation zi   the 

kinematic probabilities trom one time to another is described  Solutions 

ot the problem are then presented  A numerical example is given, and the 

results are discussed. 



II.  STATEMENT OF THE PROBLEM 

Let us consider a weapon system of caliber d delivering a small 

projectile of mass m Into a target. The projectile has a muzzle velo- 

city, V , with respect to a given rectangular Cartesian coordinate system, 

x-y-z, which Is also an Inertia frame, having the y coordinate axis In 

the range direction. The range to the target Is short such that the air 

density p and the temperature In the neighborhood of the trajectory, as 

well as the gravitational acceleration, g, can be taken as constant. It 

follows the velocity of sound a0 Is also constant. 

Also let us assume the air is almost still and the projectile moves 

with its axis tangent to its trajectory. The only force acting on the 

projectile are the drag and the gravitational force. We can now write 

down the normal equations of motion for the projectile as follows [4] 

x - -Kjjpd2 V Vx/m 

y - -KpPd2 V Vy/m (2.1) 

z - -KDpd
2 V V^/m - g 

where V ,V and V  are the components of V along x,y and z coordinate 

axes respectively, and IC is the drag coefficient. 

It has been shown in [5,6,7] that 1C can be considered as a function 

of Mach number for (2.1) and for certain range of Mach numbers K- is 

inversely proportional to the Mach number of the projectile. Consequently, 

it can b« written as follows 



where    6    is a positive constant ct proportionality and depends on the 

type of projectile,  in particular,   the geometrical configuration. 

A simple linearization of  (2.1)  can be done by substituting  (2.2) 

into   (2.1). 

x •  Y* 

y - yy (2.3) 

z  ■ Y*  -  g 

where    Y ■ -ßa0  P d2/m. 

Letting x - x,x ■ y and x ■ z, we can reduce (2.3) to a system 

of first order linear system, with the Initial conditions at t0 - 0 

specified, as follows: 

*i " xi+3 i-1,2,3 

x.  -  YX j-4,5 (2.^) 

x6   -  YX6-g 

and x^O)  - xj i-1,2,   •••,6 

Now,    x      is not deterministic for there exists initial dispersion. 

Therefore,   (2.4)   is a system of stochastic differential equations with 

stochastic initial conditions. 

Our problem can now be stated succinctly as follows:    given the Initial 

joint probability density function of    x.,  find the joint and marginal pro- 

bability density functions of    x.(t)    for  (2.4). 



A natural follow-up question is as follows:    given a target    T,  find 

the probability of    x.(t)  over    T, which is the probability of hit. 

In this report, we presume that    x  ,  a random vector with components 

x  ,  has normal joint probability density function with independent marginal 

probability density functions characterized by two parameters - mean    u. 

and variance    (c  )   .    A rectangular parallelepiped target, as shown in 

Figure 2,  is considered,  i.e. 

T - {(x!,x2,x3)eE3isi ix,  1 s2,  s3 £ x,, 1 s^,  85 < x3 ^ a^      (2.5) 

where    s.    Is specified. 



III.  METHOD OF SOLUTION 

For convenience  let us consider, in general, a system of n first 

order ditlerential equations written in matrix form 

(3.1) 
y - t(y,t) t - 0 

y(0) - yL 

where T 

y - (y .y . ••• ,y ) 
i. n 

f - (t yii%   ••• ,tn)
T 

and 

y(0) - (yi»y2» ••' .yn> • 

Geometrically (3.1) describes the dynamics of a point in E  with 

time  t as a parameter.  If the initial condition is known only probabi- 

listically, then the solution of the vector equation (3.1) is a random 

vector even though the equation itself is deterministic.  Thus, we can 

solve for the solution y, a random vector, by considering these equations 

as if they were deterministic ones, and obtain the solution in the form 

y = (Ky'.t) (3.2) 

We observe that in (3.2)  $  is a deterministic transformation mapping the 

random vector  y  detlned on a probability space Q  into a new random 

vector y detlned on the same space as shown in Figure 2A. Moreover, this 

mapping is deterministic.  Hence, (p is probability - preserving i.e. 

P(yf$A) = P(>ÜeA) (3,3) 

where    P    denotes a probability distribution and    A    is a meaöu.-abic eibs^r 

of  the  reals- 



These notions lead us readily to an approach for solving (2.4) based 

on the previous works [8,9]. For convenience, let us recapitulate the 

results In a form of a theorem without proof: 

Theorem 

Given the system (3.1) and the Initial joint probability density 

function p(y0) at t • t .  If for all l,j-l,2, ••• ,n 

3fi l—MlM (3.4) 

In the domain of definition, where M Is a positive constant. Then, ehe 

probability density function for t > t., denoted by p(y,t), which 

satisfies the following partial differential equation 

3o   n ^PV 

is given by the formula 

P(y.t) - p(y0) | |2- | (3.6) 

o 
where -r^—  Is the Jacoblan of the Initial vector y  with respect to 

the vector y. 

Note that it Is essential for this approach that the Inverse of y 

In (3.2), I.e., 

y0 - *(y) (3.7) 

where      -1 
* - 4»  , 

must be attainable In order to utilize (3.6). 



IV. SOLUTION OF THE PROBLEM

We observe that the theorem is applicable to (2.4). Hence, our 

problem reduces to obtain the Inverse of the solution of (2.4).

Let us denote

•••

•••

(4.1)

Solving (2.4) for x", ve obtain

where

AxfB

"l 

0 

0 

0 

0 

0

(4.2)

0

1

0

0

0

0

0

0

1

0

0

0

a

0

0

b

0

0

0

a

0

0

b

0

(4.3;

(0, 0. -g(a+t)
. 0, 0, -ag)^ (4.4)

a - (b-l)/Y (4.5)

(4.6)

The absolute value of the J^toblan of (4.2) Is then

I - (4.7)



Now, the Joint probability density function of x at any time t can 

be written by using (4.2) with the normal Joint probability density function 

of x  as follows: 

-3Yt        ,  6  x -v 
p(x,t) -  S__  exp{-± ZC-i-^)2} (4.8) 

,,.3   0        i-1  o" 
(2n) no, i 

i-1 1 

where 

«1 - uj 1-1,2,4,5 

v3 - .
03 + Ä (t+a) 

and        0 

v6 - ii6 + ag. 

We have tacitly used the independence among the marginal probability 

densities of x  as stated. 

It follows that the marginal probability density of x is expressible 

as 

p(x ,t) -    . p(x>t)dx (4.9) 
1     'E 

where       n 

dx ■ IT dx.      for n-6,  and 
J-l  J 

J^i 

the integral sign denotes n-1 Integrals over E  . Thus we can write 

with the use of (4.8) and (4.9) following results 

/  ^    b     /  ! r Xi- (Va W ,2, p(x ,t) - -—^ exp{- ■=■ [  ] > (4.10 
^2^ oj 

where 

Bi " (a 0l+3)2 + (b 01)2 i-1.2.3 



and 
p(x.,t) 

/27 
exp [- j (  g— )   ] i-A,5,6 (a.11) 

The mean of    x.     Is expressible by definition as 

u^t) 
' _o 

xi p(x1,t)dx1 (4.12) 

which yields the following results with the use of (4.10) and (4.11): 

u^t) - ^ - .vi+3/b. i-1.2.3 (4.13) 

u1(t) - vi/b i-4.5,6 (4.U) 

Similarly, the mean square value of x. can be written as 

Elx^(t)] - | x^ p(xi,t)dxi (4.15) 

which gives 
ß. 

E[x'(t)] - 4^ ^l 
1      b 

a* 
1+3 .2 
u    ^ » i-1.2,3 (4.16) 

E[x^(t)] - (o^ + v[)/b i-4,5,6 (4.17) 

Since the variance of x  is related to its mean and mean square value as 

a^(t) - E[x^(t)] - uj(t) (4.18) 

the following results are immediaca 

10 



jj(t) - ß1/b
2 i-1,2,3 (a.19) 

oj(t) - [o°/bl2 1-4,5,6 (4.20) 

For the target T of (2.5) the probability of hit at a given time t, 

Ph(t}, can be obtained by first finding the joint probability density 

function of x., 1-1,2,3; I.e. 

f 
p(x ,x2,x3,t) - I 3p(x,t)dS (4.21) 

E 

where 

dx - dx^ dx5 dx6 

Subsequently, p
h(t) over T can be written as follows 

f _ 
Ph(t) - I p(xi,x2,x3,t)dx (4.22) 

where dx - dx dx dx  and the integral UM.T denotes a triple integral 

over T. 

Substantially, by utilizing the results of (4.21) into (4.22) and 

employing the notion of error functions, we obtain the following expression: 

where 

Ph(t) - n [erf(n2i) - erf(n^^)]^ (4,23) 

^21-1 * b(82i-l " V^ 

n21  - b(s2i - ^/^ 

11 



V.  NUMERICAL EXAMPLE 

As an illustration, let us consider the following weapon system In 

the milieu as given: 

m - 3.774xl0"4 slug (85 grain) 

d - 1.9685xl0'2 ft  (6.0nim) 

8 - 0.25 

a0 - 1120.27 ft/sec 

p - 2.377xl0"3 slug/ft3 

g - 32,174 ft/sec2 

The system gives initial dispersion with means (ft) and standard 

deviations (ft) as follows: 

u0 - 3.xl0"5 0° - 1.5xl0'5 

0    r..,A-5 .0   ,  lrt-5 
I 

-6x10 O2 - 3.X10 

.0 - 2xl0-5 0° - lO"5 

- J - 2.0 (ft/sec) oj - 0.1 (ft/sec) 

,\  - 3500.0 (rt/sec) 0° - 50.0 (ft/sec) 

u\  - 3.0 (ft/sec) 0° - 0.2 (ft/sec) 

A rectangular parallelepiped target T has the following dimensions 

(ft) for its s : 

s - -3.0 s2 ■ 3.0 

s-, - -2.0 8U • 2.0 

85 - -3.5 8b - 3.5 

12 



L«t ut consider that T la zeroed In, and la situated at a range x . 

Since T Is a volume target, let us specifically address ourselves to a 

particular tine t1 which is related to x  with nil initial variance. 

A deterministic relation can be readily obtained for t  from (2.4) as 

follows: 

t1 -^ln[l + Y(X^ - x2
0)/x°J (5.1) 

As an illustration, a set of ranges up to x. - 1000 meters is con- 

sidered. For eny value of x  in this set, (5.1) yields the corresponding 

t , and the results in Section 4 are then subsequently utilized in seeking 

numerical solutions. 

In Fig. 3 the "flight time" t  acroas the range x2 of interest is 

given. The rengeward mean velocity u, is shown in Fig. 4. In Fig. 5 

the mean lateral displacement and velocity u and u^    are shown. The 

rangeward mean transverse displacement and velocity, u and i      ere given 

In Fig. 6. 

Fig. 7, 8 and 9 depict the rangeward standard deviations, o. and 

o..., respectively. The maxima of the marginal density funcclon p(x ) 

are given In Fig. 10, 11 and 12. Finally, the effects of target dimensions 

and initial dispersion on the probability of hit Fh(t ) are shown, 

respectively, in Fig. 13 and 14. 

13 



VI.  DISCUSSION AND CONCLUSIONS 

A solution to the problem of finding the kinematic probability of 

terminal ballistics, given an initial dispersion, has been presented in 

this report. The feasibility of such a solution implies that the initial 

dispersion of a weapon system, rather than the terminal one, should be 

addressed rigorously in a weapon system effectiveness study. 

For any given range and target configuration, the terminal effective- 

ness, such as probability of hit. Is simply a consequential result once 

the initial dispersion of the weapon proper is attained.  In contriving 

the preliminary design layout of a conceptual weapon system, the initial 

dispersion is therefore one of the most significant factors for considera- 

tions.  It is a key juncture to the overall system effectiveness. 

The method of attack presented here is general to the extent that no 

constraint is posed on the probability of initial dispersion.  Indeed, the 

methods can also be employed for the cases other than normal distribution 

as specified for the problem.  The theorem is applicable to a nonlinear 

system as well as a linear one whenever (3.7) is obtainable. 

As we can observe from (4.2) and (4.3), X  hence X  are coupled 

among each other. The common concern for an initial dispersion in terms 

of the initial displacement alone is therefore not adequate.  Clearly, we 

should also take the initial velocity due to weapon dynamics in addition to 

the muzzle velocity, into account for consideration of an initial dispiersion. 

The result of (4,23) for a volume target can readily be applied to an 

area target of rectangular shape by collapsing one dimension and letting 

one-half of the difference of the error functions for that coordinate 

14 



assume th« value of unity in computation. Moreovei, (4.23j indicates 

that Ph(t) for a volume target Is bounded by one-half of the corresponding 

value for the area target. 

Using (4.14) the absolute value of the mean striking velocity u   (t) 

can be written as 

6    1/2 u (t) - [ E v r'Vb (6.1) 
1-4 

We observe as u (t) vanishes as t Increases to Infinity.  On the other 

hand, from (4.13) we can write the asymptotic value for the mean dis- 

placement a.(t), 1-1,2,3 as follows 

vl+3 
vi(t) " vi + "T7T {b-2) 

which provides an upper bound for terminal mean displacement. The para- 

meter Y ^ (2.4) and (4,6) can lead us to consider 1/IY| as the time 

constant of the system. 

The direction cosines a  of the striking velocity vector are 

obtainable from the ratio of (4.14) and (6.1) as follows: 

cos a. - —7—=         1-4,5,6 (6.3) 

We observe that a.  is time Invariant; I.e., the a  at the terminal point 

coincides with that of any departure point. 

It should be noted that the modeling does not Involve rotational 

effect of a projectile  Furthermore, the relation (2.2) should be observed. 

15 



The advantage in choosing K- In Che form (2.2) is two-fold.  It not 

only reduce« the nonlinear systems of (2.1) into a linear system but 

also gives a "better" approximation to the empirical curves of K. for 

the ranges of our concern (around 1 to 5 Machs), in contrast to the 

customary assumption being constant. 

The numerical results in Fig. 4 through 6 can be obtained identically 

by solving (2.4) as a deterministic system with x. - p..  The standard 

deviations shown in Fig. 7 to 9 are almost linear with respect to the 

range. The maximum of displacement probability density function, 

p(x.)  , 1*1,2,3, decays rapidly before 400m as shown in Fig. 10, 11 and 

12.  In the same figures, the maximum of velocity probability density 

function is shown having slow diversion initially up to a point about half 

way of the range, and then an escalation. 

In Fig. 13, it is shown that as the target dimension Increases the 

probability of hit P.Ct1)  Increases as well. When the initial dispersion 

decreases, p
h(
t') increases as shown in Fig. 14.  The sensitivities of 

p(x ) and Ph(t') with respect to system parameters and initial dispersion 

can be further Investigated by using the results of the Section 4. 

16 



e 
0) 
4J 
U 
> 
w 
c 
o 
o 
<D 
(U 
& u 

o H 
U-l « 

3 

E P- 
Q) 0) 
Ü o 
c c o o 
u u 
tu CO 
0 

lu 
co o 
c 
o > 
•H X( 
tic 9 
<u u 

(X! w 
tH (0 
(0 (0 

•H V 
4J c 
c (U 
0) > 
tn •H 
en u 
w o 

0) 
4) M-l 

s ■4-1 

r-t 

ti 
•H 
(b 

17 



/ 

/ 

/ 

/ / 

(0 
9) 
4J 
<0 c 

•H 

U 

/ 0) 

W 

Ü0 

18 



E 
O 

c 

a 
« C 
o. 0 

en 
to 

C 0) 
o rH 

•H JO 
4J (fl 
O •H 
c Wi 
3 a fc > 

II 

H 

OJ 
M 
3 
CO 
RJ 
0) 
X 
<o 

•O" 
»4-1 

o 
c 

c o 
o •H 

•H iJ 
4J (0 
«0 1 
c o 
01 «4-1 

eo 0) 
<u c 
>-l to 
a u 
01 H 
« 

00 
o c 

•H •H 
4J > 
(0 Wi 
E 0) 
o 0) 

4= m 
u i-i 
w a« 

< 
tN 

oi) 
•H 
t. 

19 



l.h  r- 

1.2 - 

0.8 _ 

0.4 - 

0.0 
0.0 200 A00 600 800 1000 

Ranj>G x  meters 

Fig. 3 Flight Time vs. Range 

o 
■SI 

u 
o 

-J 

c 
It! 
a: 
c 
« 

4000 ,_ 

3000 

?000 

1000 

0.0 200 400 600 , 800 1000 

Range  x  meters 

Fig. 4  Moan Range Velocity vs. Range 

20 



2.0 

c 
% 
0) 
u 
(0 

a 
0) 

u 
a» 
« 

c 
ca 
v 

o 
(U 
to 

y 
o 
0) 
> 

<u 
(0 

c 

• u 
«J 01 

<*-» n 

f u 
a IM 

4J VO 
c 3 

% 
V >> 
o 4J 
tS •H 

r-l U 
a O 
09 H 

■H 0) 
O > 
« 01 
« « 
M h 
41 0) 
> > 
« «9 
C C 
cd « 
M M 
H H 

C C 
«0 (0 
V 01 
X r 

1.5  - 

1.0  - 

0.5  - 

0.0 
0      200    400     600    800     1000 

Range x. meters 

Fig. 5 Mean Lateral Displacement & Velocity vs. Range 

10 i- 

0 _x(<:  

-10 - 

-20 _ 

-30 
1000 

Range x  meters 

Fig. 6 Mean Transverse Displacement & Velocity vs. Range 

21 



o 
i-H 

X 

u 
<u 

o 

X 

m 
c o 

u 
a 

■• 

c 
u 

._„L  J I  

200    400      600     800 

Range x  meters 

Fig. 7 Standard Deviations vs. Range 

1000 

<u 
(0 

X 
CO 

D 

0) 
c 
o 

> 
Q 

T) 

« 
c 
ft 
u 

i. . u 
•>», 

^-                                                                             s ^.                                                                   s 
>v#                                                                                                                                                /r 

' ^.                                                               ■* 

^.                                 ^ 
1.5 ^ 

^.                     y \.              X 
",v.           y' 

ye 
y*'^' 

1.0 s jr                               ***, 

/ y                                           >^i 

0.5 

/ 

0.0 \s     ..     J.,            i    . ,  —i , ,  J ,      i 
200 400 

Range x. 

600 

meters 

800 1000 

Fig. 8 Standard Deviation vs. Range 

22 



« 

•-• CM   i-i m 
D      D 

n 

!> 

Si 
•v u 
« 

1 

200 400 

Range x2 

Fig. 9 Standard Deviation v«. Range 

600 

meters 

800 1Ö00 

23 



, § ^ o 
••-4 

c o 
00 

1 
o 
l—t 

X to 
9) 
0) in * 
« • f-H 

u <N "»- 
01 1 
(0 A 

«0 »—» ^ 
x> D D 

1 1 

< « 

? 

o 
o 

o 
> 

•s 
I 
a. 

c 
o 

•H 
(0 
u 
V a 

et       -H 

5 

o o 

lt-1 
o 

01 

u 

•* 
1-1 

Jk c 

d 
o 
o 

il^i^A    -»Tri i" ^3TimwMoad 

24 



\ 

\ 

A 
K 

*M 

I 
0) 
c 
o 

0) 
c 

0 u 
Ou 

i 
•H 

5 

00 

•3j/'3»s    ( ,x)d 

•^•p^d jo umm-pxpw 

•[.'**  T_0T « C1«)«1 

25 



o o o 

o o 
00 

o o 

I 

en 
u 
v 
u 

CM 
K 

CO 

g 
a: 

a 
c 
o 

9) 
c 

O 

o 

6 

o 
—J o 

00 
1-1 

00 

 L L  
v« •» CM 

jg/'oas    oT x  ( x)d 

•3J  30T x  (cx)d 

'}*p*d jo ammjxvH 

26 



\ 

K 

a 

1 s 

o o 
00 

a 
00 
c 
5 

• 
(0 
> o 

o 0) 
\o c 

o 

o 
1 

4J 
0) •H 
u a 
V c 

S 
o >^ 
o 4J 
»» (N i-t 

K ^1 

01 a 
tc ji 
c 0 

s u 
Pu 

o o 
CM £ 

vO m m CM 

■oa«/'3j (;,x)d 

'j#p#d jo ontnTXHH 

•3J I_0T x ( x)d 

27 



■* r^ m 
rH H 
X X X 

CO -» CM 

X X X 

«N vO en 

u 
0) 

0) 
60 

4J 

'S 
'S 
M 

g 
m 
c 
o 

•rt 
n 
a 

01 
«0 
V4 

n 

(0 u o 
0) 

u 

t-t 

• 
00 

•H 
Pb 

00 

o 
vO 

O o O 

o 
o 

28 



REFERENCES 

1. Falllii, H.A , "Analysis of Machine Gun Burse Dispersion Data with 

Corresponding Effectiveness Model", TM-33, U. S,  Army Materiel 

Systems Analysis Agency, Aberdeen Proving Ground, Maryland, July 

1969. 

2. Hung, H.M. and Wong, J.T., "A Machine Gun Burst Effectiveness Model 

for Volume Targets", SY-TN9-70, Systems Analysis.Directorate, U. S. 

Army Weapons Command, Rock Island, Illinois, May 1970. 

3. Hung, H.M., "Dynamic Response of a Weapon System with Stochastic 

Excitations", SY-R1-70, Systems Analysis Directorate, U. S army 

Weapons Command, Rock Island, Illinois, March 1970, 

4. McShane, E.J,, Kelley, J,L. and Reno, F.V., Exterior Ballistics, The 

university of Denver Press, 1953. 

5. Trajectories, Differential Effects and Data for Projectiles, AMCP 

706-140, 1963. 

6. Hitchcock, H,P., "Aerodynamic Data for Spinning Projectiies", BRL 

620, 1952, 

7. Carn, R.E., Carroll, M.N, and Faiiin, H-K., "Efrectiveness or the 

7.62mm M60 Machine Gun and the 5.56mm Stoner Machine Gun", U. S. 

AMSAA Technical Memorandum No, 41, 1969 (C) 

8. Dostupor, B.C. and Pugachev, VS., "The Equation for the Integral of 

a System of Ordinary Differential Equations Containing Random 

Parameters", Autometika i Telemekhanika, Vol. 18, 1957, pp, 671-682, 

9. Saaty, T.L,, Modern Nonlinear Equations, McGraw-Hill Book Company, 

1967. 

29 



L&OA^mikC 
Security C'ldssificnlion 

DOCUMENT CONTROL DATA   R&D 
iSmcuniY t lamlictHon ct lltle. body ol mbMlrmci mnd Indtxlnj annolmllon muH 6« »nfnd wh»n thm ov«f«ll fpotl I» c/«««<fi»d) 

i    o«ir.iN*TiNii  ACTIVITY fCorp >r*l« «u(hor) 

Systems Analysis Directorate 
Headquarters, U. S. Army Weapons Command 

ll». HKPOmr IICUMITV   CLASSIFICATION 

UNCLASSIFIED 
26.   CROUP 

.'   ntPOtr   TiTLe 

On the Kinematic Probability of Terminal Ballistics with Initial Dispersion 

4   'Jt»c«i<» Ti vE NO T ES fTVp* of rapon and fncfudv* data«; 

Final   Technical  Report 
9    Au THORi»! (Flrml narna, middl* Initial, laaf nama) 

H.   M.   Hung 

J.   T.   Wonp 

«     BIPOUT   OA TE 

September   1970 
•a.    CONTRACT   OR   GRANT  NO 

b. PROJEC T NO 

7a. TOTAL NO. OF PACKS 

38 
7b.  NO. OP  REFS 

M.  OPICINATOR'S REPORT NUMVCRISI 

9b. OTHER REPORT NOIS) (Any otfiar nuaibara that may b* m»»l0»ud 
IM» rapori; 

10    DISTRI BUTlON  STATEMENT 

Distribution  of  this  document   is  unlimited. 

II      SUPPLEMENTARY   NOTES 12.   SPONSORING MILITARY   ACTIVITY 

Headquarters, U. S. Army Weapons Command 
Rock. Island, Illinois 

II  A BSTRAC ' 

The terminal ballistic dispersion of a non-rotational, small-caliber weapon 
system is obtained on a priori knowledge of the initial dispersion induced 
by the weapon system proper. 

The study considers a dynamic system whose behavior is governed by a system 
of differentia] equations having probabilistic initial conditions.  The 
behavior of the system, In terms of the kinematic probability, is then 
determined as a function of time and spatial variables. 

Subsequently, in co^' 
weapon system eff 
is obtained as a funct 
well as discussion of thi 

o the customary method in the evaluation of 
a measure of effectiveness - probability of hit - 
Initial dispersion.  Also, numerical examples as 

.^ults are given. 

REPLACES DO FORM  1471.  I  JAN S4, «MICH IS fNVS      FOAM       4   .J  T'i       REPLACES DO FORM  1471. 
DD . .~v ..1473 O"<^«T« 'o- •■•" "•« UNCLASSIFIED  



UNCLASSIFIED 
BgwjS Cl>t»tflcatton 

KIV mono» 
LINK   A 

WO LB WT 

LINK   C 

noL> ••T HOLE 

Terminal ballistics dispersion 

Non-rotational,  small-caliber weapon  system 

Dynamic system 

Probabilistic initial condition 

Stochastic differential equation 

Evaluation of weapon system effectiveness 

Probability of hit 

UNCLASSIFIED 


